323 research outputs found

    Influence of methylene fluorination and chain length on the hydration shell structure and thermodynamics of linear diols

    Get PDF
    The interplay between the local hydration shell structure, the length of hydrophobic solutes, and their identity (perfluorinated or not) remains poorly understood. We address this issue by combining Raman–multivariate curve resolution (Raman-MCR) spectroscopy, simulation, and quantum-mechanical calculations to quantify the thermodynamics and the first principle interactions behind the formation of defects in the hydration shell of alkyl–diol and perfluoroalkyl–diol chains. The hydration shell of the fluorinated diols contains substantially more defects than that of the nonfluorinated diols; these defects are water hydroxy groups that do not donate hydrogen bonds and which either point to the solute (radial-dangling OH) or not (nonradial-dangling OH). The number of radial-dangling OH defects per carbon decreases for longer chains and toward the interior of the fluorinated diols, mainly due to less favorable electrostatics and exchange interactions; nonradial-dangling OH defects per carbon increase with chain length. In contrast, the hydration shell of the nonfluorinated diols only contains radial-dangling defects, which become more abundant toward the center of the chain and for larger chains, predominantly because of more favorable dispersion interactions. These results have implications for how the folding of macromolecules, ligand binding to biomacromolecules, and chemical reactions at water–oil interfaces could be modified through the introduction of fluorinated groups or solvents

    Self Consistent Molecular Field Theory for Packing in Classical Liquids

    Full text link
    Building on a quasi-chemical formulation of solution theory, this paper proposes a self consistent molecular field theory for packing problems in classical liquids, and tests the theoretical predictions for the excess chemical potential of the hard sphere fluid. Results are given for the self consistent molecular fields obtained, and for the probabilities of occupancy of a molecular observation volume. For this system, the excess chemical potential predicted is as accurate as the most accurate prior theories, particularly the scaled particle (Percus-Yevick compressibility) theory. It is argued that the present approach is particularly simple, and should provide a basis for a molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure

    RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    Get PDF
    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM

    Simple geometrical interpretation of the linear character for the Zeno-line and the rectilinear diameter

    Full text link
    The unified geometrical interpretation of the linear character of the Zeno-line (unit compressibility line Z=1) and the rectilinear diameter is proposed. We show that recent findings about the properties of the Zeno-line and striking correlation with the rectilinear diameter line as well as other empirical relations can be naturally considered as the consequences of the projective isomorphism between the real molecular fluids and the lattice gas (Ising) model.Comment: 7 pages, 2 figure

    A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions

    Get PDF
    Background Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed. Results Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted. Conclusions Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively

    Effect of Ca2+ Channel Block on Glycerol Metabolism in Dunaliella salina under Hypoosmotic and Hyperosmotic Stresses

    Get PDF
    The effect of Ca2+ channel blockers on cytosolic Ca2+ levels and the role of Ca2+ in glycerol metabolism of Dunaliella salina under hypoosmotic or hyperosmotic stress were investigated using the confocal laser scanning microscope (CLSM). Results showed that intracellular Ca2+ concentration increased rapidly when extracellular salinity suddenly decreased or increased, but the increase could be inhibited by pretreatment of Ca2+ channel blockers LaCl3, verapamil or ruthenium red. The changes of glycerol content and G3pdh activity in D. salina to respect to hypoosmotic or hyperosmotic stress were also inhibited in different degrees by pretreatment of Ca2+ channel blockers, indicating that the influx of Ca2+ via Ca2+ channels are required for the transduction of osmotic signal to regulate osmotic responses of D. salina to the changes of salinity. Differences of the three blockers in block effect suggested that they may act on different channels or had different action sites, including influx of Ca2+ from the extracellular space via Ca2+ channels localized in the plasma membrane or from intracellular calcium store via the mitochondrial. Other Ca2+-mediated or non-Ca2+-mediated osmotic signal pathway may exist in Dunaliella in response to hypoosmotic and hyperosmotic stresses

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Photochemistry Of Monochloro Complexes Of Copper(ii) In Methanol Probed By Ultrafast Transient Absorption Spectroscopy

    Get PDF
    Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu-II(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 Ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(H) to copper(I) and the formation of MeOH center dot Cl charge-transfer complexes. The depletion of ground-state [Cu-II(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu-II(MeOH)(5)Cl](+) and [Cu-II(MeOH)(4)Cl-2] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative
    corecore